Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine Stability Sensor

1983-02-01
830428
It has been proved from many studies and applications that, to improve fuel economy, is necessary to operate near lean limit without exceeding it, to avoid unstable engine running and resulting car surging. On this purpose, besides a precise and flexible control system, an engine stability sensor, to adopt closed loop control strategies, is needed. A research has been carried out on different measurement methodologies with the aim of developing a reliable and low cost stability sensor to be used on production cars. For this reason sensors yet applied in automotive field, like accelerometer and pick-up or oriented to this application, like ring pressure sensors, have been used. As basis of comparison the cyclic dispersion,measured with a pressure sensor inside the combustion chamber, has been considered.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Experimental Investigation of Fuel Consumption, Exhaust Emissions and Heat Release of a Small-Displacement Turbocharged CNG Engine

2006-04-03
2006-01-0049
An experimental investigation of fuel consumption, exhaust emissions and heat release was performed on a prototype 1.2 liter 4 cylinder turbocharged CNG engine, which has been specifically developed and optimized in order to fully exploit natural gas potential. More specifically, the combination of a high CR of 10.1:1 and a Garrett high-performance turbocharger featuring selectable levels of boost produced a favorable efficiency map, with peak values exceeding 35%. The experimental tests were carried out in order to assess the engine performance improvement attainable through turbocharging and to define the best control strategies for this latter. The investigation included ample variations of engine speed and load, RAFR as well as trade-offs between boost level and throttle position. At each test point, in-cylinder pressure, fuel consumption and ‘engine-out’ pollutant emissions, including methane unburned hydrocarbons concentration, were measured.
Technical Paper

Experimental Investigations of Two-Stroke SI Combustion with Simultaneous Cycle-Based Fuel Consumption Measurements

2010-09-28
2010-32-0061
Unstable combustion and high cyclic variations of the in-cylinder pressure associated with low engine running smoothness and high emissions are mainly caused by cyclic variations of the fresh charge composition, the variability of the ignition and the fuel mass. These parameters affect the inflammation, the burn rate and thus the whole combustion process. In this paper, the effects of fluctuating fuel mass on the combustion behavior are shown. Small two-stroke engines require special measuring and testing equipment, especially for measuring the fuel consumption at very low fuel flow rates as well as very low fuel supply pressures. To realize a cycle-resolved measurement of the injected fuel mass, fuel consumption measurement with high resolution and high dynamic response is not enough for this application.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

2020-04-14
2020-01-0857
Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Journal Article

Fuel Cell Auxiliary Power Units for Heavy Duty Truck Anti-Idling

2013-09-24
2013-01-2470
The DESTA project, funded by the European Commission under the FCH JU program, is a collaborative effort of AVL List GmbH, Eberspächer Climate Control Systems, Topsoe Fuel Cell (TOFC), Volvo and Forschungszentrum Jülich to bring fuel cell based auxiliary power units (APU) for heavy duty truck idling elimination closer to the market. Within this project Solid Oxide Fuel Cell (SOFC) technology is used, which enables the use of conventional diesel fuel. During the project the technology is significantly optimized and around 10 APU systems are thoroughly tested. In 2014 a vehicle demonstration on board of a US type Volvo class 8 truck will be performed.
Technical Paper

Future Diesel-Powertrain in LCV and SUV-Electrified, Modular Platform with Focus on Emission, Efficiency and Cost

2021-04-06
2021-01-0635
Considering worldwide future emission and CO2-legislation for the Light Commercial Vehicle segment, a wide range of powertrain variants is expected. Dependent on the application use cases all powertrain combinations, from pure Diesel engine propulsion via various levels of hybridization, to pure battery electric vehicles will be in the market. Under this aspect as well as facing differing legal and market requirements, a modular approach is presented for the LCV and SUV Segment, which can be adapted flexibly to meet the different requirements. A displacement range of 2.0L to 2.3L, representing the current baseline in Europe is taken as basis. To best fulfill the commercial boundaries, tailored technology packages, based on a common global engine platform are defined and compared. These packages include engine related technical features for emission- and fuel consumption improvement, as well as electrification measures, in particular 48V-MHEV variants.
Technical Paper

Generic software architecture for cost efficient powertrain electrification

2015-04-14
2015-01-1630
Hybrid-electric vehicles provide additional functionality compared to conventional vehicles. So-called ‘hybrid’ software functions are required to coordinate the conventional powertrain control and these additional control functions. A key factor to reduce the fuel consumption lies in optimal control of the entire interconnected powertrain. This paper aims to provide a framework for efficient interface definition, connection and coordination of control units for hybrid electric vehicles. Such a framework supports an efficient development of control unit architectures and the distribution of software functions. The generic approach necessitates modular software functions. It defines the distribution of these functions in control units optimized with respect to reuse, interfaces and compatibility with different powertrain topologies and electrification variants, especially also considering compatibility with a conventional powertrain and its electric hybridization.
Technical Paper

High Power Discharge Combustion Effects on Fuel Consumption, Emissions, and Catalyst Heating

2014-10-13
2014-01-2626
A key element to achieving vehicle emission certification for most light-duty vehicles using spark-ignition engine technology is prompt catalyst warming. Emission mitigation largely does not occur while the catalyst is below its “light-off temperature”, which takes a certain time to achieve when the engine starts from a cold condition. If the catalyst takes too long to light-off, the vehicle could fail its emission certification; it is necessary to minimize the catalyst warm up period to mitigate emissions as quickly as possible. One technique used to minimize catalyst warm up is to calibrate the engine in such a way that it delivers high temperature exhaust. At idle or low speed/low-load conditions, this can be done by retarding spark timing with a corresponding increase in fuel flow rate and / or leaning the mixture. Both approaches, however, encounter limits as combustion stability degrades and / or nitrogen oxide emissions rise excessively.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Technical Paper

Investigations on the Sound Quality of Engines with Low Cylinder Numbers

2014-06-30
2014-01-2041
Due to future directives of the European Union regarding fuel consumption and CO2 emissions the automotive industry is forced to develop new and unconventional technologies. These include for example stop-start-systems, cylinder deactivation or even reduction of the number of cylinders which however lead to unusual acoustical perceptions and customer complaints. Therefore, it is necessary to evaluate the sound character of engines with low numbers of cylinders (2 and 3 cylinders) and also the differences to the character of the more common 4-cylinder engines. Psychoacoustic parameters are used to describe and understand the differences. Based on the gained knowledge possible potentials for improvement can be derived in the future. The used data base consists of artificial head recordings of car interior noise according to defined driving conditions measured on the AVL test track. Naturally, there are more recordings available for 4-cylinder engines than for 2- and 3-cylinder engines.
Technical Paper

Key Steps and Methods in the Design and Development of Low Noise Engines

1999-05-17
1999-01-1745
The next generation of automotive engines has to meet 2004 emission limits, ideally with improved fuel economy and with noise emission which is at least 3 dBA below the current status. Using both simulation and experimental analysis these challenging requirements can only be fulfilled by clearly defining all key steps in NVH development and by applying suitable technological methods. The development procedure discussed in this paper is characterised by several aspects: two stage prediction procedure fully integrated in the design process, combustion development with a definite focus on noise, a closed loop between simulation and test bed development and consideration of noise in the calibration of engine and drivetrain management systems. Apart from meeting target noise levels, noise quality is the reference parameter which is continuously evaluated by means of the AVL Annoyance Index.
Technical Paper

Measurement Approaches for Variable Compression Ratio Systems

2021-04-06
2021-01-0649
In the ongoing competition of powertrain concepts the Internal Combustion Engine (ICE) will also have to demonstrate its potential for increased efficiency [1]. Variable Compression Ratio (VCR) Systems for Internal Combustion Engines (ICE) can make an important contribution to meeting stringent global fuel economy and CO2 standards. Using such technology a CO2 reduction of between 5% and 9% in the World Harmonized Light-Duty Vehicle Test Cycle (WLTC) are achievable, depending on vehicle class, load profile and power rating [2]. This paper provides a detailed description of the measurement approaches that are used during development of the AVL Dual Mode VCSTM and other VCR systems in fired operation. Results obtained from these measurements are typically used to calibrate or verify simulation models, which themselves are an integral part of the development of these systems [3].
Journal Article

Measurement of Piston Friction with a Floating Liner Engine for Heavy-Duty Applications

2022-03-29
2022-01-0601
The further increase in the efficiency of heavy-duty engines is essential in order to reduce CO2 emissions in the transport sector. This is also valid for the future use of alternative fuels, which can be CO2-neutral, but can cause higher total costs of ownership due to higher prices and limited availability. In addition to thermodynamic optimization, the reduction of mechanical losses is of great importance. In particular, there is a high potential in the piston bore interface, since continuously increasing cylinder pressures have a strong influence on the frictional and lateral piston forces. To meet these future challenges of increasing heavy-duty engine efficiency, AVL has developed a floating liner engine for heavy-duty applications based on its tried and tested passenger car floating liner concept.
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
X